UNIVERSITE D'ANTANANARIVO

Domaine Sciences et Technologies Mention Mathématiques et Informatique

Année universitaire 2023-2024 Semestre 1

TD Analyse, Série Nº 2

Exercice 1.

1) En utilisant la définition de la convergence d'une suite, montrer que la suite $(\frac{1}{n})_{n\geqslant 1}$ converge vers zéro, $(\frac{2n+1}{n+2})_n$ converge vers deux et $((i)^n)_n$ est divergente.

2) Etudier la convergence des suites (x_n) , (y_n) et (t_n) définies respectivement par

$$x_n = n \sum_{k=1}^{2n+1} \frac{1}{n^2 + k},$$
 $y_n = \frac{1}{n} \sum_{k=0}^{n-1} \cos \frac{1}{\sqrt{n+k}},$ $t_n = \frac{1}{n!} \sum_{k=1}^{n} k!$

pour tout $n \in \mathbb{N}$.

Exercice 2. Soient $(u_n)_n$ une suite complexe et $l \in \mathbb{C}$. Démontrer que $(u_n)_n$ converge vers l si et seulement si la suite réelle $(\mathcal{R}e(u_n))$ converge vers $\mathcal{R}e(l)$ et la suite réelle $(\mathcal{I}m(u_n))$ converge vers $\mathcal{I}m(l)$.

Exercice 3. Soit A une partie non vide de \mathbb{R} et α un réel.

Démontrer que α est un point adhérent à A si et seulement si il existe une suite réelle (x_n) d'éléments de A (i.e $\forall n \in \mathbb{N}, x_n \in A$) qui converge vers α .

Exercice 4.

- 1) Soit (t_n) une suite réelle à termes positifs. Montrer que si (t_n) converge, alors sa limite est un réel
- 2) Montrer que si une suite réelle converge vers $l \in \mathbb{R}_+^*$, tous les termes de la suite sont strictement positifs à partir d'un certain rang.

Exercice 5.

- 1) Démontrer que la limite d'une suite réelle (x_n) , croissante et majorée est $l = \sup(x_n)$.
- 2) Démontrer que la limite d'une suite réelle (y_n) , décroissante et minorée est $l' = \inf_{n \in \mathbb{N}} (y_n)$.

Exercice 6. Soient u_0 , v_0 deux réels distincts et λ , μ deux réels positifs. On considère les suites (u_n) et (v_n) définies par

$$u_{n+1} = \frac{u_n + \lambda v_n}{1 + \lambda}$$
 et $v_{n+1} = \frac{u_n + \mu v_n}{1 + \mu}$

- 1) Montrer que la suite (w_n) de terme général $w_n = v_n u_n$ est une suite géométrique de raison qtel que |q| < 1.
- 2) Montrer que si $\mu \geqslant \lambda$, alors (u_n) et (v_n) sont adjacentes. 3) Montrer l'égalité $\sum_{k=0}^{n-1} (u_{k+1} u_k) = \frac{\lambda}{1+\lambda} \frac{1-q^n}{1-q} (v_0 u_0)$. En déduire la limite des deux suites (u_n) et (v_n) si $\mu \geqslant \lambda$.
- 4) Quel est le comportement de (u_n) et (v_n) si $u_0 = v_0$?

Exercice 7. On considère les suites (x_n) et (y_n) dont les termes x_1 et y_1 sont donnés, vérifiant les relations:

$$x_{n+1} = \frac{1}{3}(2x_n + y_n)$$
 , $y_{n+1} = \frac{1}{3}(x_n + 2y_n)$

- 1) Exprimer x_n et y_n en fonction de x_1 , y_1 et n.
- 2) Montrer que (x_n) et (y_n) sont deux suites adjacentes et déterminer leur limite commune.

Exercice 8.

- 1) Montrer que la suite (u_n) définie par $u_n = \frac{3n+2}{2n+1}$ est une suite de Cauchy.
- 2) Montrer que la suite (s_n) définie par $s_n = \sum_{i=1}^{n} \frac{1}{k}$, pour $n \in \mathbb{N}^*$ n'est pas de Cauchy. En déduire que $\lim_{n\to+\infty} s_n = +\infty$.
- 3) En utilisant le critère de Cauchy, étudier la nature de la suite v définie par $v_n = \frac{\sin 1}{3} + \frac{\sin 2}{3^2} + \cdots + \frac{\sin n}{3^n}$

Exercice 9.

Soit $(u_n)_{n\in\mathbb{N}}$ la suite réelle définie pour tout $n\in\mathbb{N}$ par $u_0=1$ et $u_{n+1}=\sqrt{1+u_n}$.

1) Montrer que pour tous $m, n \in \mathbb{N}$,

$$\mid u_{n+1} - u_{m+1} \mid \leqslant \frac{\mid u_n - u_m \mid}{2}$$

2) En déduire que la suite est de Cauchy.

Exercice 10.

Soient $k \in \mathbb{R}_+^*$ et $(u_n)_{n \in \mathbb{N}}$ une suite réelle telle que pour tout $n \in \mathbb{N}$,

$$|u_{n+2} - u_{n+1}| \leq k |u_{n+1} - u_n|.$$

- 1) Montrer que si $k \in [0; 1[$, alors (u_n) est convergente.
- 2) Etudier la convergence de (u_n) pour $k \ge 1$.

Exercice 11. Soit $(u_n)_{n\geqslant 1}$ une suite numérique convergeant vers un réel l. Montrer que la suite vdéfinie par $v_n = \frac{u_1 + u_2 + \dots + u_n}{n}$ converge également vers l.

Exercice 12. Soit (U_n) une suite homographique définie par $U_{n+1} = \frac{aU_n + b}{cU_n + d}$ où a, b, c, d sont des réels tels que $a + d \neq 0$, ad - bc < 0 et c > 0.

- 1) Montrer que l'équation caractéristique $r=\frac{ar+b}{cr+d}$ admet deux racines réelles r_1 et r_2 vérifiant $r_1 < \frac{-d}{c} < r_2$.

 2) Montrer que si a + d > 0 et $U_0 > \frac{-d}{c}$, alors $U_n > \frac{-d}{c}$.

 3) Montrer que si a + d < 0 et $U_0 < \frac{-d}{c}$, alors $U_n < \frac{-d}{c}$.

 4) On considère les suites (x_n) et (y_n) définies respectivement par

$$\begin{cases} x_0 = 0 \\ x_{n+1} = \frac{3}{x_n + 2} \end{cases}, \begin{cases} y_0 = 1 \\ y_{n+1} = \frac{y_n}{y_n - 4} \end{cases}$$

 $\begin{cases} x_0 = 0 \\ x_{n+1} = \frac{3}{x_n + 2} \end{cases}, \begin{cases} y_0 = 1 \\ y_{n+1} = \frac{y_n}{y_n - 4} \end{cases}$ Vérifier que ces suites sont bien définies puis exprimer x_n et y_n en fonction de n.

Exercice 13. Soit $(u_n)_{n\geq 0}$ la suite récurrente définie par

$$\begin{cases} u_0 = 1 \\ u_{n+2} = -u_{n+1} + u_n \quad , \text{ pour tout } n. \end{cases}$$

Déterminer u_1 pour que la suite soit à termes positifs.

Exercice 14. Soit la suite récurrente (u_n) définie par $u_0 = -2$, $u_1 = 0$, $u_2 = 1$, $u_3 = -2$ et la relation de récurrence $u_n = 4u_{n-1} - 7u_{n-2} + 6u_{n-3} - 2u_{n-4}$. Exprimer u_n en fonction de n.

2