UNIVERSITE D'ANTANANARIVO

S3 2021-2022

Sciences et Technologies

Mention Mathématiques Espace quotient et Informatique TD $n^{\circ}1$

Notation: On note par \mathbf{Z}_p le groupe additif $\mathbf{Z}/p\mathbf{Z}$.

Exercice 1

On considère les deux applications $f: \mathbf{Z} \longrightarrow \mathbf{Z}_6, n \to 5n + 6\mathbf{Z}$ et

 $g: \mathbf{Z} \longrightarrow \mathbf{Z}_{18}, n \rightarrow 11n + 18 \mathbf{Z}$

- 1) Montrer que f et g sont des morphismes de groupes.
- 2) Sachant que 11 et 18 sont premiers entre eux, montrer que g est surjectif.
- 3) Montrer qu'il existe un unique morphisme $h: \mathbf{Z}_{18} \longrightarrow \mathbf{Z}_6$ telle que $f = h \circ g$. Montrer que h est surjectif.

Exercice 2

On considère les deux applications $f: \mathbf{Z} \longrightarrow \mathbf{Z}_{12}, n \to 2n + 12 \mathbf{Z}$ et $g: \mathbf{Z} \longrightarrow \mathbf{Z}_{18}, n \to 3n + 18 \mathbf{Z}$.

Soit i l'injection canonique de $f(\mathbf{Z})$ dans \mathbf{Z}_{12} .

Montrer qu'il existe un isomorphisme de groupes $\bar{h}: g(\mathbf{Z}) \longrightarrow f(\mathbf{Z})$ vérifiant $f = i \circ \bar{h} \circ g$.

Exercice 4

On note:

- * S_3 le groupe symétrique d'ordre 3, c-à-d, le groupe de toutes les bijections de $\{1,2,3\}$ sur lui-même, appelé groupe des permutations de $\{1,2,3\}$;
 - * Aut(G) le groupe de tous les automorphismes de G, G étant un groupe.
- 1) On pose $\mathbf{Z}_2 \times \mathbf{Z}_2 = \{x_0, x_1, x_2, x_3\}$ où $x_0 = (\dot{0}, \dot{0}), x_1 = (\dot{0}, \dot{1}), x_2 = (\dot{1}, \dot{0})$ et $x_3 = (\dot{1}, \dot{1}).$

Soit $\sigma \in S_3$ une permutation et f_{σ} l'application de $\mathbb{Z}_2 \times \mathbb{Z}_2$ sur $\mathbb{Z}_2 \times \mathbb{Z}_2$ définie par $f_{\sigma}(x_0) = x_0$ et pour $1 \leq i \leq 3$, $f_{\sigma}(x_i) = x_{\sigma(i)}$.

Montrer que f_{σ} est un automorphisme de groupe.

- 2) Montrer que l'application $\Theta: S_3 \to \operatorname{Aut}(\mathbf{Z}_2 \times \mathbf{Z}_2), \ \sigma \to f_{\sigma}$ est un isomorphisme de groupes.
- 3) On désigne par \mathbf{Z}_8^{\times} le groupe des éléments inversibles de \mathbf{Z}_8 .
 - a) Montrer que $\mathbf{Z}_{8}^{\times} = \{\bar{1}, \bar{3}, \bar{5}, \bar{7}\}.$
- b) On pose $y_i = \overline{2i+1}$ pour i = 0, 1, 2, 3. Montrer que $\psi : S_3 \to \operatorname{Aut}(\mathbf{Z}_8^{\times}), \sigma \to \psi(\sigma) = g_{\sigma}$ telle que $g_{\sigma}(y_0) = y_0$ et pour $i = 1, 2, 3, g_{\sigma}(y_i) = y_{\sigma(i)}$ est un isomorphisme de groupes.
- 5) Montrer qu'il existe un isomorphisme de $\operatorname{Aut}(\mathbf{Z}_2 \times \mathbf{Z}_2)$ sur $\operatorname{Aut}(\mathbf{Z}_8^{\times})$.

Exercice 5

Soit E et F deux groupes tels que E soit engendré par un élément a.

- 1) Montrer que tout morphisme f de E vers F est entièrement déterminé par la donnée de f(a).
- 2) On suppose que E est un groupe d'ordre n. Montrer que l'ordre de f(a) divise n.
- 3) Déterminer tous les morphismes de groupes de \mathbb{Z}_3 dans \mathbb{Z}_7 , de \mathbb{Z}_3 dans \mathbb{Z}_{12} , de \mathbb{Z}_{12} dans \mathbb{Z}_3 .